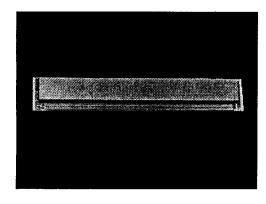
Boeing Mid-IR BIB FPA Technology

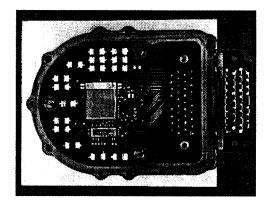
Presented to:
NGST Annual Technology Challenge Review #1
NASA/Goddard Space Flight Center
July 7-10, 1997

David H. Seib
Boeing Research and Technology Center
Anaheim, CA

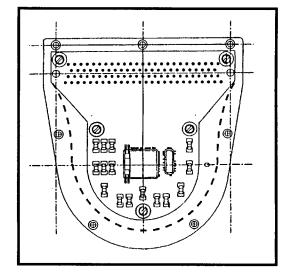
Partially Sponsored by: "Si:As and Si:Sb Arrays for SIRTF", Subcontract No. OSP27136-5403, Cornell University

Introduction and Outline


- Blocked-Impurity-Band (BIB) HFPA Background
- BIB Detector Summary
- Multiplexers for BIB HFPAs
- BIB HFPA Performance
- Future BIB HFPA Development


Background

- Si:As Blocked-Impurity-Band (BIB) Detectors & HFPAs Provide Capability to Reach NGST Wavelength Range Goal
 - Si:As responds to λ ~ 30 μ m
 - Excellent low-background performance, uniformity & operability
- Boeing BIB Arrays Are Proven for Space Missions
 - Flown on SPIRIT II, SPIRIT III/MSX (10x25, 8x192 arrays)
 - Flight hardware delivered for Wide-Field Infrared Explorer (2-128² arrays)
 - Flight hardware build initiated for SIRTF IRS & MIPS (5-128² arrays -Si:As and Si:Sb)


Boeing BIB Focal Planes for Space

SPIRIT III (1996)

Wire (1998)

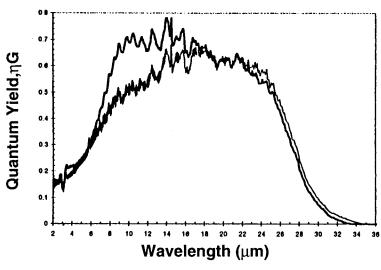
SIRTF (2001)

• Mounts for Interface to Cryogenics, Cryogenic Cabling and Flight Electronics also Developed

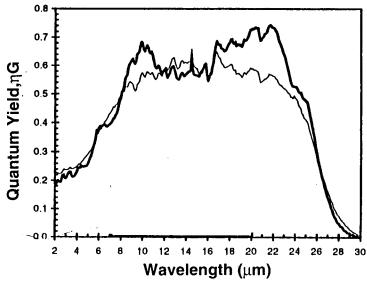
Background (Cont)

- 128² BIB Arrays Have Been Optimized for a Wide Range of Applications
 - High-flux arrays for passive seekers/ground-based astronomy
 - Moderate-flux arrays plus switchable integration capacitance
 - Low-flux arrays for space
 - Si:As and Si:Sb Detectors
- BIB HFPA Technology Has Been Extended to 256² Format
 - 50 μ m x 50 μ m pixels
 - First application high-flux, passive seekers

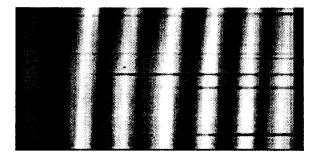
Provides Technology Base Supporting Continued BIB HFPA Evolution and Refinement to Meet NGST Goals

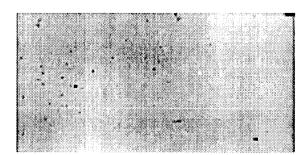

Si:As BIB Detectors

- Silicon Epitaxial Technology Developed to Provide High-Quality, Uniform, Large-Area Detector Arrays
 - $\le 2\%$ responsivity non-uniformity (σ / μ)
 - > 99.9% operability
- Anti-Reflection (AR) Coating Technology Successfully Applied
 - QE improvement for imaging
 - Interference fringe (channeling) reduction for spectroscopy
 - Further improvements are being pursued
- Additional Detector Properties Are Covered in a Companion Paper



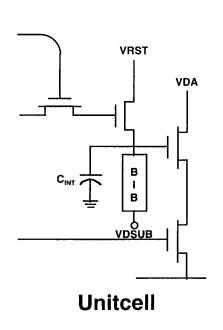
AR Coating Results

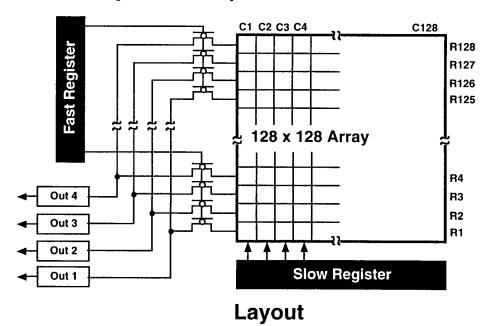

25 μm AR Coating


BUEING

Fringe Suppression with AR Coating

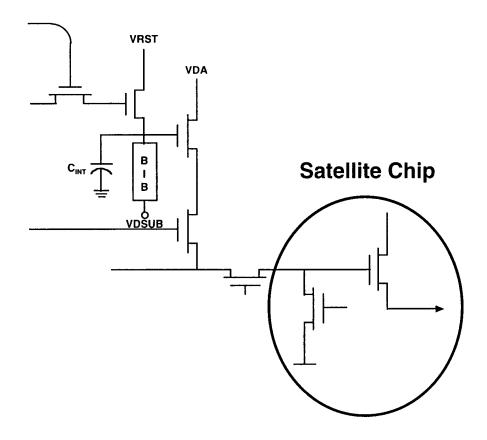
No AR Coating $\lambda_m = 8.99 \mu m$


AR Coating for λ = 9.6 μ m λ _m =11.7 μ m



Data Courtesy of Tom Hayward, Cornell University

Multiplexers for BIB HFPAs


- 128 x 128-element Multiplexer for Space Missions (WIRE, SIRTF)
 - 75 μ m x 75 μ m direct readout unit cell size
 - Four outputs
 - Non-destructive read capability for multiply sampled readout
 - $C_{eff} = 0.13 pF$
 - Boeing 2 μm Cryogenic CMOS process (Orbit Semiconductor)

"Satellite" Chip

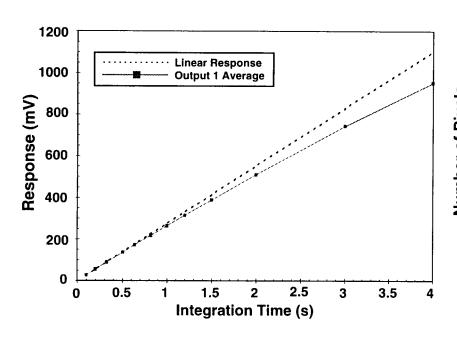
- Developed and Used to Eliminate Glow (Photon Emission) Detected from Multiplexer Circuits
- Separate Chip Which Contains Internal Current Source Loads, Output Drivers, Clock Buffer Circuits

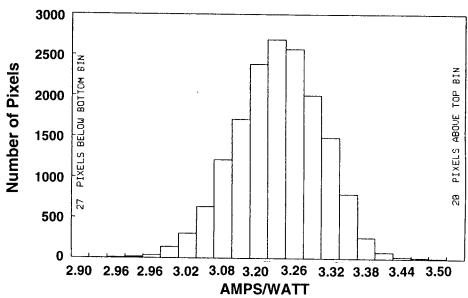
128² BIB HFPA Data Summary

T ~ 7.5 K

$$T_{int} = 4 s$$

Detector Bias = 1.5 V


Measurement Wavelength	FPMA Number	Detector Split	Read Noise (erms)	Responsivity (A/W)	NEI (ph/s)	DQE	Operability (%)	Non- Uniformity (%)	Dark Current (e/s/pixel)
11.6 μm	9	Α	56	6.8	94	0.79	99.70	4.1	13
	10	В	54	6.3	98	0.78	99.90	3.8	197
	11	В	57	6.3	105	0.84	99.40	3.2	_
20.6 μm	8	Α	52	11.0	107	0.87	99.80	4.0	33
	6	В	55	8.7	117	0.71	99.80	3.2	292
	7	В	52	9.8	96	0.82	98.90	3.7	

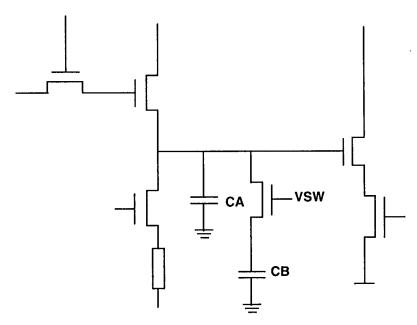

^{*} Influenced by Spurious Reflection

Sampling up the Ramp Measurements Made by Cornell University

- T = 4.2 K, $T_{int} > 600 s$
- Equivalent Read Noise = 20 erms
- Dark Current < 10 e/s-pixel

128² HFPA Data

Output vs. Integrated Charge

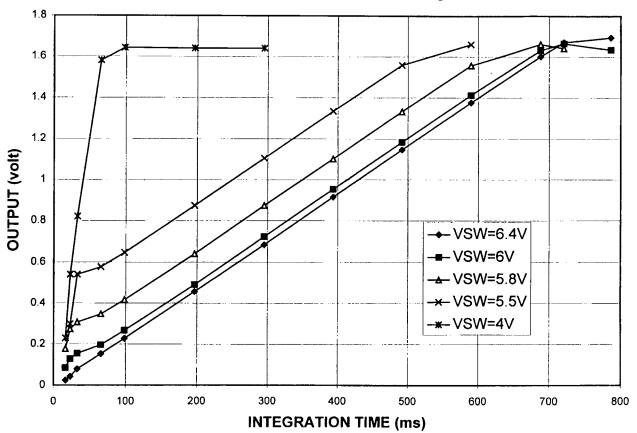

10 % Linearity at 6x10⁵ e/well

Responsivity Histogram

Non-uniformity = 2.0%

Switchable Integration Capacitance Unit Cell

 Optimizes Sensitivity and Well Capacity for Combined Imaging and Spectrometer Applications


- Boeing's First 256x256-element BIB Arrays for Low/ Moderate Flux will use this Design
 - 50 μ m x 50 μ m unit cells
 - $C_{eff} = 0.225 pF or 3.6 pF$

Switchable Integration Capacitance Results

T=5 K

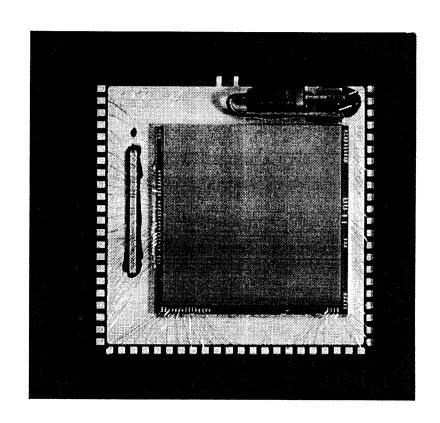
Bias = 2.0 V

Flux = 10^{12} ph/cm²-s @ 10.6μ m

 $C_{eff} = 0.17 \text{ or } 1.75 \text{ pF}$

256² BIB HFPAs Have Been Demonstrated

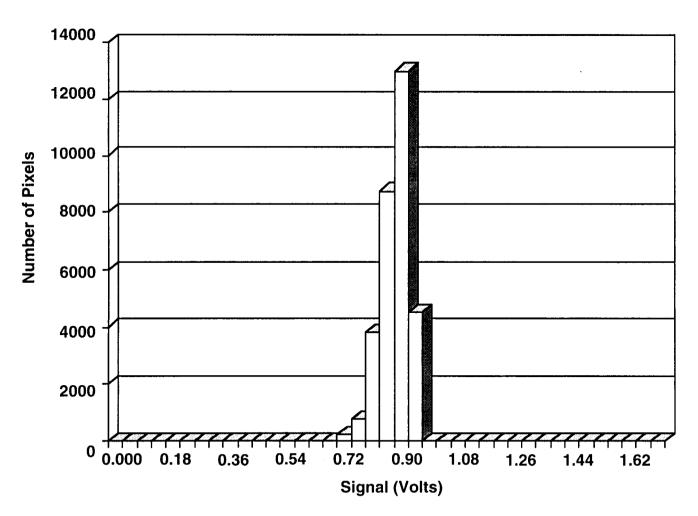
- First Devices Are for High-Flux, Seeker Applications
- High Multiplexer Fabrication Yield Achieved
 - 0.6 μm CMOS, 0.8 μm SOI CMOS processes used with minimal changes
 - Advantages of state-of-the-art silicon processes are retained (high yield, availability, etc)
- 256² Multiplexer Functional Yield of 65% Achieved with First 0.6 μ m CMOS Lot
- 256² BIB HFPAs Are Fully Functional, Undergoing Test and Optimization


256² BIB HFPA Features

16 Outputs @ 4 Mpix/s (1000 Frames/s)

50 μ m x 50 μ m Direct Injection Unit Cells

Variable Integration Time


Charge Capacity 2.2x10⁷ e/well

256² BIB HFPA Signal Histogram

Flux $\sim 7x10^{14} \text{ ph/cm}^2\text{-s}$

Si:As BIB HFPAs for NGST

- Desired array characteristics for MIR (6/97 NGST Study Team)
 - 1000 x 1000 element array (Mosaic of 512 x 512)
 - 27 μ m x 27 μ m pixels
 - <15 e/read single sampling readout noise</p>
 - >6 x 10⁴ e/well capacity
 - <12 s readout time for entire array</p>
 - <1 e/s/pixel dark current at T = 6-8 K</p>
 - >50% quantum efficiency
- Multiplexer Array, Pixel Sizes Are Achievable with Present Sub-Micron Silicon Processes
 - Direct readout unit cell
 - Present photolithographic limit is $\sim\!650^2$ elements for 27 μm cell
 - Development with Existing Silicon Processes Provides Cost, Yield and Availability Advantages

Si:As BIB HFPAs for NGST

- Greatest challenge is readout noise achievable with
 - Direct readout unit cell
 - Off-chip CDS
 - Design/layout optimization for deep cryogenic operation
- No performance barriers are forseen
 - $->6X10^4$ e/well, pixel readout time ~12 μ s are readily achievable

Si:As BIB HFPA for NGST Can Be Realized with Reasonable Development Resources

Summary and Conclusions

- Boeing 128 x 128-element Si:As BIB HFPA Technology is Mature and Proven in Space
- Boeing Has Demonstrated 256 x 256-element BIB HFPAs
- A Broad Funding Base for BIB HFPAs (DoD, NASA, other) Exists at Boeing to Support Continued Development and Evolution

NGST's Long-wavelength IR Requirements Can Be Met Using Si:As BIB HFPA Technology